Modelos cuantitativos para la planificación de la producción de impresión bajo enfoque de fabricación ajustada bajo incertidumbre
Número
Sección
Publicado
16-04-2025
Resumen
La incertidumbre de la demanda es inherente a los procesos de planificación de la producción en un entorno de fabricación, debido, entre otras cosas, a la aceptación intermitente de pedidos por parte de los clientes. En este sentido, es necesario proporcionar enfoques y herramientas capaces de hacer frente a estos retos relacionados con la incertidumbre. El objetivo de este artículo es presentar un análisis comparativo de varios enfoques de modelización cuantitativa para la planificación de la producción en un enfoque de fabricación ajustada (LM) bajo incertidumbre. Cabe señalar que se desea centrar los enfoques en la industria de la impresión. La metodología de búsqueda consistió en seleccionar artículos centrados en LM e incertidumbre y en la industria gráfica u otra de características similares desde una perspectiva cuantitativa. Los principales resultados están relacionados con la identificación de los enfoques de modelización y las herramientas Lean aplicadas. Tras el análisis de los artículos seleccionados, se ha identificado el uso de seis enfoques de modelización, destacando la programación estocástica (SP) y la programación lineal entera mixta (MILP); asimismo, los modelos identificados tienen como objetivo minimizar los costes, optimizar la producción y satisfacer la demanda de los clientes en un entorno incierto. El uso de herramientas de LM mejora la estabilidad y la eficiencia de los recursos, por lo que debería incluirse un mayor número de ellas. Los modelos revisados ofrecen varios enfoques para hacer frente a la incertidumbre en los sistemas de producción, que pueden ser muy útiles para la industria gráfica y otros sectores.Palabras clave:
Fabricación ajustada, planificación de la producción, modelado cuantitativo, incertidumbre, impresión
Agencias de apoyo
- The research leading to these results received funding from Project "Industrial Production and Logistics Optimization in Industry 4.0" (i4OPT) (Ref. PROMETEO/2021/065) granted by the Valencian Regional Government; and from Grant PDC2022-133957-I00 (CADS4.0-II) funded by MCIN/AEI /10.13039/501100011033 and by European Union Next Generation EU/PRTR.
Referencias
AGNETIS, A., BIANCIARDI, C., & IASPARRA, N. (2019). Integrating lean thinking and mathematical optimization: A case study in appointment scheduling of hematological treatments. Operations Research Perspectives, 6. https://doi.org/10.1016/j.orp.2019.100110
AINUL A., PULAKANAM, V., & PONS, D. (2017). Success factors and barriers to implementing lean in the printing industry: A case study and theoretical framework. Journal of Manufacturing Technology Management, 28(4), 458–484. https://doi.org/10.1108/JMTM-05-2016-0067
AZADEH, A., YAZDANPARAST, R., ZADEH, S., & ZADEH, A. (2017). Performance optimization of integrated resilience engineering and lean production principles. Expert Systems with Applications, 84, 155–170. https://doi.org/10.1016/j.eswa.2017.05.012
BARTOL, T., BUDIMIR, G., DEKLEVA-SMREKAR, D., PUSNIK, M., & JUZNIC, P. (2014). “Assessment of Research Fields in Scopus and Web of Science in the View of National Research Evaluation in Slovenia.” Scientometrics 98 (2), 1491–1504. https://doi.org/10.1007/s11192-013-1148-8.
BECERRA, A., VILLANUEVA, A., NÚÑEZ, V., RAYMUNDO, C., & DOMINGUEZ, F. (2019). Lean manufacturing model in a make to order environment in the printing sector in Peru. Advances in Intelligent Systems and Computing, 971, 100–110. https://doi.org/10.1007/978-3-030-20494-5_10
BJÖRK, K., & CARLSSON, C. (2007). The effect of flexible lead times on a paper producer. International Journal of Production Economics, 107(1), 139–150. https://doi.org/10.1016/j.ijpe.2006.06.021
CHAN, CO., & TAY, HL. (2018). Combining lean tools application in kaizen: a field study on the printing industry. International Journal of Productivity and Performance Management, 67(1), 45–65. https://doi.org/10.1108/IJPPM-09-2016-0197
CHIVATXARANUKUL, K. (2019). The Application of Lean Manufacturing to Reduce Setup Time of a Printing Process.
GHAHREMANI, J., & GHADERI, A. (2022). Robust-fuzzy optimization approach in design of sustainable lean supply chain network under uncertainty. Computational and Applied Mathematics, 41(6). https://doi.org/10.1007/s40314-022-01936-w
GOMERO-CAMPOS, A., MEJIA-HUAYHUA, R., LEON-CHAVARRI, C., RAYMUNDO-IBAÑEZ, C., & DOMINGUEZ, F. (2020). Lean Manufacturing Production Management Model using the Johnson Method Approach to Reduce Delivery Delays for Printing Production Lines in the Digital Graphic Design Industry. IOP Conference Series: Materials Science and Engineering, 796(1). https://doi.org/10.1088/1757-899X/796/1/012002
GÜRSOY, B. (2021). Modelling of just-in-time distribution network under raw material quality and time constraints. Sigma Journal of Engineering and Natural Sciences – Sigma Mühendislik ve Fen Bilimleri Dergisi. https://doi.org/10.14744/sigma.2021.00019
HODGE, G. L., GOFORTHROSS, K., JOINES, J.A., & THONE, K. (2011). “Adapting Lean Manufacturing Principles to the Textile Industry.” Production Planning & Control 22(3), 237–247. https://doi.org/10.1080/09537287.2010.498577.
HOLWEG, M. (2007). “The Genealogyof Lean Production.” Journal of Operations Management 25 (2), 420–437. https://doi.org/10.1016/j.jom.2006.04.001.
INDRAWATI, S., PRATIWI, M., SUNARYO, & AZZAM, A. (2018). The effectiveness of single minute exchange of dies for lean changeover process in printing industry. MATEC Web of Conferences, 154. https://doi.org/10.1051/matecconf/201815401064
KANT, R., PATTANAIK, L., & PANDEY, V. (2020). Sequential optimisation of reconfigurable machine cell feeders and production sequence during lean assembly. International Journal of Computer Integrated Manufacturing, 33(1), 62–78. https://doi.org/10.1080/0951192X.2019.1690686
KARABUK, S. (2008). Production Planning under Uncertainty in Textile Manufacturing. In Source: The Journal of the Operational Research Society, 59(4).
LU, J.C., YANG. T., & WANG, C. Y. (2011). “A Lean Pull System Design Analysed by Value Stream Mapping and Multiple Criteria Decision-Making Method under Demand Uncertainty.” International Journal of Computer Integrated Manufacturing, 24(3), 211–228. https://doi.org/10.1080/0951192X.2010.551283
MAWARE, C., OKWU, M.O., & ADETUNJI, O. (2022). “A Systematic Literature Review of Lean Manufacturing Implementation in Manufacturing-based Sectors of the Developing and Developed Countries”. International Journal of Lean Six Sigma, 13(3), 521–556. https://doi.org/10.1108/IJLSS-12-2020-0223
MIRZAPOUR A., MALEKLY, H., & ARYANEZHAD, M. (2011). A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. International Journal of Production Economics, 134(1), 28–42. https://doi.org/10.1016/j.ijpe.2011.01.027
PEARCE, A., & PONS, D. 2019. “Advancing Lean Management: The Missing Quantitative Approach.” Operations Research Perspectives, 6. 100114. https://doi.org/10.1016/j.orp.2019.100114
RAI, S. (2013). Implementation of Lean Document Production in the Printing Industry. In International Journal of Performability Engineering, 9(1).
REYES, J., MULA, J., & DIAZ-MADROÑERO, M. (2024). Quantitative insights into the integrated push and pull production problem for lean supply chain planning 4.0. International Journal of Production Research, 1-25. https://doi.org/10.1080/00207543.2024.2312205
ROJAS, T., MULA, J., & SANCHIS, R. (2022). A Conceptual Framework for Lean Manufacturing Under Uncertainty Conditions in the Graphic Industry. In The International Conference on Industrial Engineering and Industrial Management, 501-506. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-27915-7_88
ROJAS, T., MULA, J., & SANCHIS, R. (2023). Quantitative modelling approaches for lean manufacturing under uncertainty. International Journal of Production Research, 1-27. https://doi.org/10.1080/00207543.2023.2293138
TAYYAB, M., SARKAR, B., & ULLAH, M. (2018). Sustainable lot size in a multistage lean-green manufacturing process under uncertainty. Mathematics, 7(1). https://doi.org/10.3390/math7010020
WU, Y. (2011). A stochastic model for production loading in a global apparel manufacturing company under uncertainty. Production Planning and Control, 22(3), 269–281. https://doi.org/10.1080/09537287.2010.498603
Licencia
Derechos de autor 2025 Tania Rojas, Josefa Mula, Raquel Sanchis

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Esta obra se encuentra bajo una licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional.