Simulación Monte Carlo como herramienta para priorizar los riesgos de los proyectos

Número

Sección

Artículos
  • Fernando Acebes Senovilla Profesor Titular de Universidad (Autor de Correspondencia). GIR INSISOC. Dpto. de Organización de Empresas y CIM. Escuela de Ingenierías Industriales. Universidad de Valladolid. Pº Prado de la Magdalena s/n, 47011 Valladolid (España).
  • José Manuel González Varona Profesor Contratado Doctor (Autor de Correspondencia). GIR INSISOC. Dpto. Economía y Administración de Empresas. Universidad de Málaga. Avda. Cervantes, 2. 29071 Málaga (España).
  • Javier Pajares Gutiérrez Catedrático de Universidad. GIR INSISOC. Dpto. de Organización de Empresas y CIM. Escuela de Ingenierías Industriales. Universidad de Valladolid. Pº Prado de la Magdalena s/n, 47011 Valladolid (España).
  • Adolfo López Paredes Catedrático de Universidad. GIR INSISOC. Dpto. Economía y Administración de Empresas. Universidad de Málaga. Avda. Cervantes, 2. 29071 Málaga (España).

DOI:

https://doi.org/10.37610/85.689

Publicado

16-04-2025

Resumen

En este artículo proponemos un método cuantitativo para priorizar los riesgos identificados en un proyecto. Basado en simulación de Montecarlo, la propuesta que presentamos evita la utilización de la matriz probabilidad – impacto por los problemas que plantea. Para conseguir ordenar por importancia los riesgos identificados en el proyecto, modelamos cada uno de los riesgos según funciones de probabilidad y, aplicando técnicas cuantitativas y simulación de Montecarlo, conseguimos medir el impacto real de cada una de las incertidumbres sobre los objetivos de coste y de duración del proyecto. Demostramos la validez de la metodología utilizando como ejemplo un caso de estudio.

Palabras clave:

Matriz de probabilidad-impacto, análisis cuantitativo de riesgos, gestión del riesgo, simulación de Montecarlo, MCSimulRisk

Agencias de apoyo

  • Esta investigación ha sido parcialmente financiada por la Junta de Castilla y León (España) y el Fondo Europeo de Desarrollo Regional (FEDER) con la subvención VA180P20.

Referencias

ACEBES, F., CURTO, D., DE ANTÓN, J., VILLAFÁÑEZ, F. (2023a). Análisis cuantitativo de riesgos utilizando “MCSimulRisk” como herramienta didáctica. Dirección y Organización “In Press.”

ACEBES, F., DE ANTÓN, J., VILLAFÁÑEZ, F., POZA, D. (2023b). A Matlab-Based Educational Tool for Quantitative Risk Analysis, IoT and Data Science in Engineering Management. Springer International Publishing. https://doi.org/10.1007/978-3-031-27915-7_8

ACEBES, F., PAJARES, J., GALÁN, J.M., LÓPEZ-PAREDES, A. (2014a). A new approach for project control under uncertainty. Going back to the basics. International Journal of Project Management,32 423–434. https://doi.org/10.1016/j.ijproman.2013.08.003

ACEBES, F., PAJARES, J., GALÁN, J.M., LÓPEZ-PAREDES, A. (2014b). Exploring the Influence of Seasonal Uncertainty in Project Risk Management. Procedia Soc Behav Sci, 119, 329–338. https://doi.org/10.1016/j.sbspro.2014.03.038

ACEBES, F., PEREDA, M., POZA, D., PAJARES, J., GALÁN, J.M. (2015). Stochastic earned value analysis using Monte Carlo simulation and statistical learning techniques. International Journal of Project Management, 33, 1597–1609. https://doi.org/10.1016/j.ijproman.2015.06.012

ALE, B., BURNAP, P., SLATER, D. (2015). On the origin of PCDS - (Probability consequence diagrams). Saf Sci, 72, 229–239. https://doi.org/10.1016/j.ssci.2014.09.003

ALLEMAN, G.B., COONCE, T.J., Price, R.A. (2018a). Increasing the Probability of Program Succes with Continuous Risk Management. College of Performance Management. The Measurable News, 27–46.

ALLEMAN, G.B., COONCE, T.J., Price, R.A. (2018b). What is Risk? The Measurable News, 01, 25–34.

AXELOS, 2017. Managing Successful Projects with PRINCE2®, 6th editi. Ed. TSO (The Stationery Office).

BALL, D.J., WATT, J. (2013). Further Thoughts on the Utility of Risk Matrices. Risk Analysis, 33, 2068–2078. https://doi.org/10.1111/risa.12057

CHAPMAN, C.B. (1997). Project risk analysis and management-- PRAM the generic process. International Journal of Project Management, 15, 273–281. https://doi.org/10.1016/S0263-7863(96)00079-8

CHAPMAN, C.B., WARD, S. (2003). Project Risk Management: Processes, Techniques and Insights, 2nd editi. Ed. Chichester, New York.

COX, L.A. (2008). What’s wrong with risk matrices? Risk Analysis, 28, 497–512. https://doi.org/10.1111/j.1539-6924.2008.01030.x

COX, L.A., BABAYEV, D., HUBER, W. (2005). Some limitations of qualitative risk rating systems. Risk Analysis, 25, 651–662. https://doi.org/10.1111/j.1539-6924.2005.00615.x

CREEMERS, S., DEMEULEMEESTER, E., VAN DE VONDER, S., VONDER, S. VAN DE, (2014). A new approach for quantitative risk analysis. Ann Oper Res, 213, 27–65. https://doi.org/10.1007/s10479-013-1355-y

CURTO, D., ACEBES, F., GONZÁLEZ-VARONA, J.M., POZA, D. (2022). Impact of aleatoric, stochastic and epistemic uncertainties on project cost contingency reserves. Int J Prod Econ, 253, 108626. https://doi.org/10.1016/j.ijpe.2022.108626

CURTO, D., POZA, D., VILLAFÁÑEZ, F., ACEBES, F. (2023). Estimación de las Contingencias de Coste: Aplicación del análisis cuantitativo de riesgos a un proyecto real de Construcción . DYNA Ingeniería e Industria, 98, 1–7. https://doi.org/10.6036/10815

DAMNJANOVIC, I., REINSCHMIDT, K.F. (2020). Data Analytics for Engineering and Construction Project Risk Management, Risk, Systems and Decisions. Springer International Publishing, Cham.

DUIJM, N.J., 2015. Recommendations on the use and design of risk matrices. Saf Sci, 76, 21–31. https://doi.org/10.1016/j.ssci.2015.02.014

ELDOSOUKY, I.A., IBRAHIM, A.H., MOHAMMED, H.E.D. (2014). Management of construction cost contingency covering upside and downside risks. Alexandria Engineering Journal, 53, 863–881. https://doi.org/10.1016/j.aej.2014.09.008

ELMS, D.G. (2004). Structural safety: Issues and progress. Progress in Structural Engineering and Materials, 6, 116–126. https://doi.org/10.1002/pse.176

EUROPEAN COMMISSION, (2018). Project Management Methodology. Guide 3.0. Publications Office of the European Union, Brussels / Luxembourg.

FRANK, M. (1999). Treatment of uncertainties in space nuclear risk assessment with examples from Cassini mission implications. Reliab Eng Syst Safe, 66, 203–221. https://doi.org/10.1016/S0951-8320(99)00002-2

GOERLANDT, F., RENIERS, G. (2016). On the assessment of uncertainty in risk diagrams. Saf Sci, 84, 67–77. https://doi.org/10.1016/j.ssci.2015.12.001

HILLSON, D. (2014). How to manage the risks you didn’t know you were taking. PMI® Global Congress, 1–8.

HILLSON, D., SIMON, P. (2020). Practical Project Risk Management. THE ATOM METHODOLOGY, 3th editi. Ed. Berrett-Koehler Publishers, Inc.

HULETT, D.T. (2012). Acumen Risk For Schedule Risk Analysis - A User’s Perspective [WWW Document]. White Paper. https://info.deltek.com/acumen-risk-for-schedule-risk-analysis (accessed 5.23.21).

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. (2019). ISO/IEC 31010:2019 Risk management - Risk assessment techniques.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. (2018). ISO 31000:2018 Risk management – Guidelines.

INTERNATIONAL PROJECT MANAGEMENT ASSOCIATION. (2015). Individual Competence Baseline for Project, Programme & Portfolio Management. Version 4.0, International Project Management Association. https://doi.org/10.1002/ejoc.201200111

KERZNER, H. (2022). Project Management. A Systems Approach to Planning, Scheduling, and Controlling, 13th editi. Ed. New York.

KOULINAS, G.K., DEMESOUKA, O.E., SIDAS, K.A., KOULOURIOTIS, D.E. (2021). A topsis—risk matrix and Monte Carlo expert system for risk assessment in engineering projects. Sustainability (Switzerland), 13, 1–14. https://doi.org/10.3390/su132011277

KRISPER, M. (2021). Problems with Risk Matrices Using Ordinal Scales. https://doi.org/10.48550/arXiv.2103.05440

KUESTER, K., MITTNIK, S., PAOLELLA, M.S. (2006). Value-at-risk prediction: A comparison of alternative strategies. Journal of Financial Econometrics, 4, 53–89. https://doi.org/10.1093/jjfinec/nbj002

KWON, H., KANG, C.W. (2019). Improving Project Budget Estimation Accuracy and Precision by Analyzing Reserves for Both Identified and Unidentified Risks. Project Management Journal, 50, 86–100. https://doi.org/10.1177/8756972818810963

LAMBRECHTS, O., DEMEULEMEESTER, E., HERROELEN, W. (2008). Proactive and Reactive Strategies for Resource-Constrained Project Scheduling with Uncertain Resource Availabilities. Journal of scheduling, 11, 121–136. https://doi.org/10.1007/s10951-007-0021-0

LEMMENS, S.M.P., LOPES VAN BALEN, V.A., RÖSELAERS, Y.C.M., SCHEEPERS, H.C.J., SPAANDERMAN, M.E.A. (2022). The risk matrix approach: a helpful tool weighing probability and impact when deciding on preventive and diagnostic interventions. BMC Health Serv Res, 22, 1–11. https://doi.org/10.1186/s12913-022-07484-7

LEVINE, E.S. (2012). Improving risk matrices: The advantages of logarithmically scaled axes. J Risk Res, 15, 209–222. https://doi.org/10.1080/13669877.2011.634514

LI, J., BAO, C., WU, D. (2018). How to Design Rating Schemes of Risk Matrices: A Sequential Updating Approach. Risk Analysis, 38, 99–117. https://doi.org/10.1111/risa.12810

LORANCE, R.B., WENDLING, R. V. (2001). Basic techniques for analyzing and presentation of cost risk analysis. Cost Engineering, 43, 25–31.

MONAT, J.P., DOREMUS, S. (2020). An improved alternative to heat map risk matrices for project risk prioritization. Journal of Modern Project Management, 7, 214–228. https://doi.org/10.19255/JMPM02210

NADERPOUR, H., KHEYRODDIN, A., MORTAZAVI, S. (2019). Risk Assessment in Bridge Construction Projects in Iran Using Monte Carlo Simulation Technique. Practice Periodical on Structural Design and Construction, 24, 1–11. https://doi.org/10.1061/(asce)sc.1943-5576.0000450

NI, H., CHEN, A., CHEN, N. (2010). Some extensions on risk matrix approach. Saf Sci, 48, 1269–1278. https://doi.org/10.1016/j.ssci.2010.04.005

PEACE, C. (2017). The risk matrix: Uncertain results? Policy and Practice in Health and Safety, 15, 131–144. https://doi.org/10.1080/14773996.2017.1348571

PROJECT MANAGEMENT INSTITUTE. (2009). Practice Standard for Project Risk Management. Project Management Institute, Inc., Newtown Square, Pennsylvania 19073-3299 USA.

PROJECT MANAGEMENT INSTITUTE. (2017). A Guide to the Project Management Body of Knowledge: PMBoK(R) Guide, 6th editi. Project Management Institute Inc., Pennsylvania - USA.

PROJECT MANAGEMENT INSTITUTE. (2019). The standard for Risk Management in Portfolios, Programs and Projects. Project Management Institute, Inc., Newtown Square, PA, USA.

PROTO, R., RECCHIA, G., DRYHURST, S., FREEMAN, A.L.J. (2023). Do colored cells in risk matrices affect decision-making and risk perception? Insights from randomized controlled studies. Risk Analysis, 1–15. https://doi.org/10.1111/risa.14091

QAZI, A., DIKMEN, I. (2021). From risk matrices to risk networks in construction projects. IEEE Trans Eng Manag, 68, 1449–1460. https://doi.org/10.1109/TEM.2019.2907787

QAZI, A., SHAMAYLEH, A., EL-SAYEGH, S., FORMANECK, S. (2021). Prioritizing risks in sustainable construction projects using a risk matrix-based Monte Carlo Simulation approach. Sustain Cities Soc, 65, 102576. https://doi.org/10.1016/j.scs.2020.102576

QAZI, A., SIMSEKLER, M.C.E. (2021). Risk assessment of construction projects using Monte Carlo simulation. International Journal of Managing Projects in Business, 14, 1202–1218. https://doi.org/10.1108/IJMPB-03-2020-0097

REZAEI, F., NAJAFI, A.A., RAMEZANIAN, R. (2020). Mean-conditional value at risk model for the stochastic project scheduling problem. Comput Ind Eng, 142, 106356. https://doi.org/10.1016/j.cie.2020.106356

SARYKALIN, S., SERRAINO, G., URYASEV, S. (2008). Value-at-Risk vs. Conditional Value-at-Risk in Risk Management and Optimization. State-of-the-Art Decision-Making Tools in the Information-Intensive Age, 270–294. https://doi.org/10.1287/educ.1080.0052

SIMON, P., HILLSON, D., NEWLAND, K. (1997). PRAM Project Risk Analysis and Management Guide. Association for Project Management, Norwich, UK.

SUTHERLAND, H., RECCHIA, G., DRYHURST, S., FREEMAN, A.L.J. (2022). How People Understand Risk Matrices, and How Matrix Design Can Improve their Use: Findings from Randomized Controlled Studies. Risk Analysis, 42, 1023–1041. https://doi.org/10.1111/risa.13822

TALBOT, J. (2014). What’s right with risk matrices? A great tool for risk managers... [WWW Document]. 31000risk. https://31000risk.wordpress.com/article/what-s-right-with-risk-matrices-3dksezemjiq54-4/. (accessed 2.13.23).

THE STANDISH GROUP. (2022). Chaos report [WWW Document]. https://standishgroup.myshopify.com/collections/all (accessed 9.6.23).

THOMAS, P., BRATVOLD, R.B., BICKEL, J.E. (2014). The risk of using risk matrices. SPE Economics and Management, 6, 56–66. https://doi.org/10.2118/166269-pa

TRAYNOR, B.A., MAHMOODIAN, M. (2019). Time and cost contingency management using Monte Carlo simulation. Australian Journal of Civil Engineering, 17, 11–18. https://doi.org/10.1080/14488353.2019.1606499

VANHOUCKE, M. (2016). Integrated Project Management Sourcebook: A Technical Guide to Project Scheduling, Risk and Control. Springer.

VATANPOUR, S., HRUDEY, S.E., DINU, I. (2015). Can public health risk assessment using risk matrices be misleading?. Int J Environ Res Public Health, 12, 9575–9588. https://doi.org/10.3390/ijerph120809575

VOSE, D. (2008). Risk Analysis: a Quantitative Guide, 3rd ed. ed. Wiley, Chichester, U.K.

WARD, S. (1999). Assessing and managing important risks. International Journal of Project Management, 17, 331–336. https://doi.org/10.1016/S0263-7863(98)00051-9

Descargas

Los datos de descarga aún no están disponibles.